Solution-Processed Gallium–Tin-Based Oxide Semiconductors for Thin-Film Transistors

نویسندگان

  • Xue Zhang
  • Hyeonju Lee
  • Jungwon Kim
  • Eui-Jik Kim
  • Jaehoon Park
چکیده

We investigated the effects of gallium (Ga) and tin (Sn) compositions on the structural and chemical properties of Ga-Sn-mixed (Ga:Sn) oxide films and the electrical properties of Ga:Sn oxide thin-film transistors (TFTs). The thermogravimetric analysis results indicate that solution-processed oxide films can be produced via thermal annealing at 500 °C. The oxygen deficiency ratio in the Ga:Sn oxide film increased from 0.18 (Ga oxide) and 0.30 (Sn oxide) to 0.36, while the X-ray diffraction peaks corresponding to Sn oxide significantly reduced. The Ga:Sn oxide film exhibited smaller grains compared to the nanocrystalline Sn oxide film, while the Ga oxide film exhibited an amorphous morphology. We found that the electrical properties of TFTs significantly improve by mixing Ga and Sn. Here, the optimum weight ratio of the constituents in the mixture of Ga and Sn precursor sols was determined to be 1.0:0.9 (Ga precursor sol:Sn precursor sol) for application in the solution-processed Ga:Sn oxide TFTs. In addition, when the Ga(1.0):Sn(0.9) oxide film was thermally annealed at 900 °C, the field-effect mobility of the TFT was notably enhanced from 0.02 to 1.03 cm²/Vs. Therefore, the mixing concentration ratio and annealing temperature are crucial for the chemical and morphological properties of solution-processed Ga:Sn oxide films and for the TFT performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias-stress-stable solution-processed oxide thin film transistors.

We generated a novel amorphous oxide semiconductor thin film transistor (AOS-TFT) that has exellent bias-stress stability using solution-processed gallium tin zinc oxide (GSZO) layers as the channel. The cause of the resulting stable operation against the gate bias-stress was studied by comparing the TFT characteristics of the GSZO layer with a tin-doped ZnO (ZTO) layer that lacks gallium. By p...

متن کامل

Effect of direct current sputtering power on the behavior of amorphous indium-gallium- zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

Articles you may be interested in Asymmetrical degradation behaviors in amorphous InGaZnO thin-film transistors under various gate and drain bias stresses Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors Appl. Temperature dependence of negative bias under illumination stress and recovery in amorphous indium galli...

متن کامل

Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors

Articles you may be interested in A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination Instability of amorphous hafnium-indium-zinc-oxide thin film transistors under negative-bias-illumination stress Appl. Investigation of zinc interstitial ions as the origin of anomalo...

متن کامل

High Performance Complementary Circuits Based on p-SnO and n-IGZO Thin-Film Transistors

Oxide semiconductors are regarded as promising materials for large-area and/or flexible electronics. In this work, a ring oscillator based on n-type indium-gallium-zinc-oxide (IGZO) and p-type tin monoxide (SnO) is presented. The IGZO thin-film transistor (TFT) shows a linear mobility of 11.9 cm²/(V∙s) and a threshold voltage of 12.2 V. The SnO TFT exhibits a mobility of 0.51 cm²/(V∙s) and a th...

متن کامل

Zirconium oxide-aluminum oxide nanolaminate gate dielectrics for amorphous oxide semiconductor thin-film transistors

The dielectric properties of ZrO2–Al2O3 nanolaminates, deposited via atomic layer deposition, and their impact on the performance and stability of indium gallium zinc oxide and zinc tin oxide amorphous oxide semiconductor thin-film transistors TFTs are investigated. It is found that nanolaminate dielectrics can combine the advantages of constituent dielectrics and produce TFTs with improved per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017